Сравнительный анализ ППУ и ППМ изоляции трубопроводов.

На страницах профильных журналов и конференциях продолжается дискуссия о двух применяемых в настоящее время технологиях прокладки тепловых сетей с использованием трубопроводов в заводской пенополиуретановой (ППУ) изоляции с защитной оболочкой и пенополимерминеральной (ППМ) изоляции. В ряде статей и на Интернет-сайтах производителей приводятся аргументы о предпочтительности ППМ изоляции, обладающей всеми положительными качествами ППУ изоляции, но имеющей ряд технологических особенностей. Хотелось бы продолжить дискуссию и проанализировать опубликованные данные. 
 
Основу как ППУ изоляции, так и ППМ изоляции составляет пенополиуретан. В той и другой изоляции пена образует 3 слоя: внешний и внутренний корковые с большей плотностью, чем средний – теплоизоляционный. Разница – в количестве пены и разнице слоев по плотности. ППМ изоляция состоит на 90% из пены повышенной плотности и около 10% - наполнителя (по объему). 
 
Основные достоинства ППМ, как это описывают его сторонники, – высокая механическая прочность, хорошие теплоизоляционные свойства (сопоставимый с ППУ коэффициент теплопроводности), паропроницаемость и низкое водопоглощение [2]. ППМ изоляция, имея более высокую механическую прочность, в тоже время менее стойка к повреждениям, чем ППУ в полиэтиленовой (ПЭ) оболочке, что отмечается в статье [3], при этом делается вывод об одинаковой защищенности обоих типов изоляции от повреждений. И как подтверждение этого в технических условиях изготовителей требования к осторожному обращению с трубами ППМ аналогичны требованиям для труб ППУ. В руководящем документе завода «Пенополимер» 012.РД-001.000 этот раздел практически повторяет соответствующие разделы руководств производителей труб в ППУ изоляции. 
 
Сравнение ППУ и ППМ по теплоизоляционным свойствам однозначно не в пользу ППМ. По данным [4] для ППУ коэффициент теплопроводности составляет 0.024-0.033 Вт/мК, а для ППМ– 0.044. В ТУ изготовителей указываются величины 0.043-0.047. В статье [3] – 0.041. Сошлемся на статью [2], приведя рисунок, описывающий структуру ППМ (рис.1). Как мы видим, значение 0.041 относится только к внутреннему теплоизоляционному слою. Но тепловые потери будут определяться также внутренним и внешним корковыми слоями, т. е. суммарной тепловой изоляцией. Для определения коэффициента теплопроводности корковых слоев обратимся к опубликованным данным. В статье [5] приводятся данные о теплоизоляционных свойствах ППМ при различной плотности. Учитывая влияние корковых слоев (внутренний толщиной 12мм с λ=0.045 и наружный толщиной 8мм с λ=0.07 – все данные взяты из статьи [5]), интегральный коэффициент для изоляции толщиной 50 мм составит не менее 0.044 Вт/мК. Если взять λ для среднего слоя по [2], то интегральное значение составит 0.048. Это означает, что для одинаковой толщины тепловые потери ППМ изоляции в 1.5 раза больше, чем в ППУ. Как правильно указано в [3], тепловые потери определяются не только коэффициентом теплопроводности, но и толщиной изоляции.В случае ППМ для получения одинаковых тепловых потерь необходимо пропорционально увеличивать толщину изоляции. Однако, если посмотреть на толщины изоляции, указанные в ТУ заводов –изготовителей ППМ, то лишь на диаметрах труб, меньших 100мм, есть превышение толщины ППМ на 15-30% перед толщиной изоляции ППУ по ГОСТ 30732-2006, а начиная с диаметра 273мм, толщина ППМ меньше толщины ППУ в среднем на 15%. Соответственно и тепловые потери в ППМ на средних и больших диаметрах будут значительно выше. 
 
Следующее важное преимущество ППМ в изложении его сторонников – паропроницаемость и низкое водопоглощение [2,3]. В статье [3] отмечается, что «Водопоглощение при одних и тех же условиях у ППМ в 20 раз меньше, чем у ППУ. При таких значениях водопоглощения наличие гидроизоляционного слоя не требуется - вся конструкция целиком защищает материал изоляции и наружную поверхность трубы от проникновения влаги». Низкое водопоглощение нормируется в большинстве ТУ на ППМ на уровне не более 1.5% по массе или 0.5% по объему. Испытания на водопоглощение производились путем погружения образцов в воду на 24 часа при 20 °С. Паропроницаемость этой изоляции связывается с возможностью высыхания увлажненной ППМ изоляции [3]. Вопрос о высыхании в свое время был исследован в работе [6]. Эксперименты проводились в установке (см. рис.2, взятый из работы [6]). Образцы ППМ плотностью 300 кг/куб.м, предварительно увлажненные до 12%, затем помещались в установку, где производился нагрев торцов образцов при Т=70-90 °С (левых на рисунке), а противоположные торцы были обращены в климатическую камеру с температурой 25 °С. Через 6 суток достигалось снижение влажности до 1-3%. Результаты понятные, снижение влажности в образцах достигалось за счет диффузии водяных паров через объем образцов в климатическую камеру. Но условия, смоделированные в экспериментах, не имеют ничего общего с работой бесканальной тепловой сети во влажном грунте. Если влажность грунта выше влажности изоляции, то, как будет происходить процесс высыхания? К этому можно добавить, что разводящие (вторичные) сети с мая по сентябрь отключены. То, что высыхание ППМ не происходит, подтверждает и информация, приведенная в статьях [2,6]. В статье [2] приведена влажность образцов, взятых при обследовании теплосети д89мм, находившейся в эксплуатации 6 лет в г. Рязань, - 3.1%. В статье [6] приводятся данные по массовой влажности образцов ППМ, взятые из актов осмотра распределитель-ных сетей в ППМ изоляции в Санкт-Петербурге – влажность среднего слоя составила 4.7% через 4 года эксплуатации, внешнего слоя – 11.5%, прилегающего к стальной трубе слоя – 3% при влагосодержании грунта 18%. Судя по этим результатам, гипотеза о высыхании изоляции в случае бесканальной прокладки ППМ не подтвердилась. Вообще, сам термин паропроницаемость относится к переносу водяных паров через теплоизо-ляционный материал за счет градиента концентрации (от большей к меньшей). Как может осуществляться этот перенос влаги из ППМ изоляции с меньшей концентрацией в грунт с большей влажностью, непонятно. Если сравнивать водопоглощение ППУ и ППМ, то ввиду похожей структуры (доля закрытых ячеек около 90%), эти величины должны быть сравнимы. Для сопоставления водопоглощения ППУ и ППМ по методике, указанной в ТУ на ППМ, нами были проведены соответствующие испытания образцов ППУ изоляции и получены величины водопоглощения 0.5- 1.1% (по объему) для плотности ППУ 110-75 кг/куб.м. В образцах ППМ, взятых из работающих теплотрасс [6], указывают на низкую влажность изоляции вблизи стальной трубы -3% по массе и менее. Для иллюстрации того факта, что ППУ имеет сравнимое водопоглощение, можно сослаться на работу шведских ученых [7], которые для эксперимента на одной из теплотрасс д150/280 закопали 2 участка ППУ изоляции длиной по 1м без внешней оболочки (см. рис.3). После 4-х лет эксплуатации трассы в условиях высоких грунтовых вод (частый подъем воды выше уровня труб), влажность образцов, взятых около стальной трубы, не превысила 2% по массе. Мы видим, что свойство водопоглощения обоих видов изоляции имеет аналогичные величины и при отсутствии гидрозащитной оболочки имеет место постепенное увлажнение изоляции при бесканальной прокладке. Увлажнение ППМ изоляции с учетом срока службы (25-30 лет) приводит к росту коэффициента теплопро-водности и, соответственно, тепловых потерь. Учет этого фактора по методике МДС 41-7.2004 [8] дает увеличение коэффициента теплопроводности для ППМ в конце срока службы на 16% по сравнению с начальной величиной. Очевидно, преимущества ППМ изоляции, связанные с паропроницаемостью и низким водопоглощением, сохранением теплоизолирующих свойств, очень сильно преувеличены. 
 
В связи с намоканием ППМ изоляции необходимо обратить внимание на следующий аспект этой проблемы. При изоляции стыков на трубах в ППМ уязвимыми местами с точки зрения проникновения влаги к стальной трубе являются границы заводской изоляции и изоляции стыков. В ранее упомянутых шведских экспериментах с ППУ изоляцией было показано [7], что эта граница часто служит каналом быстрого переноса влаги к стальной трубе. Заливка стыков на трассе с ППМ изоляцией не может обеспечить необходимую монолитность и водонепроницаемость этой границы, а, значит, в этих местах влага может проникать к несущей трубе. В случае труб в ППУ изоляции проверка герметичности установки муфт при изоляции стыков является обязательным требованием в соответствии с п.4.22 ГОСТ 30732-2006. 
 
К достоинствам ППМ изоляции относят простоту монтажа и ремонтопригодность. Если обратиться к РД завода «Пенополимер», набор работ и условия монтажа практичес-ки одинаковые для ППМ и ППУ изоляции за некоторым исключением. Монтаж стыковых соединений представляется более сложным и с большими ограничениями, чем на трубах с ППУ изоляцией - при температуре ниже +15° следует прогреть опалубку до 40°С, смешивание 3-х компонентов ручной дрелью занимает время, большее чем перемешивание двух компонентов ППУ. Удаление ППМ изоляции на торцах труб (как указано в инструкции завода «Пенополимер») представляется трудоемкой задачей ввиду прочности ППМ и не упрощает изоляцию стыковых соединений. При сравнении ППМ и ППУ часто указывается более высокая ремонтопригодность ППМ – замена 0.5м изоляции ППМ вместо замены целой трубы 10м в ППУ изоляции. На практике имеющийся опыт строительства тепловых сетей в ППУ изоляции показывает, что ремонт повреждений определяется характером и размерами повреждений и может носить как косметический характер (ремонт малых повреждений оболочки и изоляции), так и предусматривать замену изоляции протяженных участков в случае ее намокания или обширных повреждений. В любом случае ремонта критерий объема – это удаление поврежденной (намокшей) изоляции и восстановление целостности оболочки с обеспечением параметров, требуемых нормативными документами. 
 
К одному из «достоинств» труб в ППМ изоляции его сторонники относят отсутствие системы дистанционного контроля. В статье [3] приводится интересная аргументация – «наличие систем контроля – это не достоинство труб ППУ, а необходимость из-за герметичности внешней оболочки». А в трубах с ППМ «влага из изоляции удаляется задолго до разрушения материала и контроль за увлажнением не требуется». Как происходит «высыхание» изоляции, мы уже выше рассматривали – практика подтвердила, что увлажнение ППМ имеет место, но оно происходит бесконтрольно. Влага из грунта, сетевая вода из возможных дефектов в стальных трубах и сварных швах проникают в изоляцию, ухудшают ее теплоизоляционные свойства и могут со временем вызывать коррозию несущей трубы и серьезные утечки. Опыт показал, что именно бесконтрольность работы тепловых сетей при традиционных типах изоляции приводит к многочисленным авариям с тяжелыми последствиями и к серьезным экономическим потерям, в т.ч. и на трубопроводах в армопенобетоне, предыдущем аналоге ППМ изоляции. В трубах в ППУ изоляции появление даже малых утечек из трубы может быть обнаружено и выполнен ремонт на ранней стадии. Применяемая в трубах с ППУ изоляцией система контроля основана на простых физических принципах (измерение электрического сопротивления между сигнальным проводником и стальной трубой) и использует приборы широкого применения, в ее работе несложно разобраться любому специалисту КиПа. Стоимость системы не превышает единиц процентов от стоимости изолированных трубопроводов. В России в настоящее время накоплен значительный опыт эксплуатации систем контроля [9]. Именно эта система резко повышает надежность эксплуатации тепловых сетей, своевременно сигнализируя о появлении повреждений, особенно при использовании в варианте с диспетчеризацией. Благодаря наличию системы контроля эксплуатирующая организация имеет также информацию о качестве труб, их монтажа и изоляции стыков, чего нет в ППМ изоляции. Реальная статистика, полученная при 15-летней эксплуатации магистральных сетей Москвы в ППУ изоляции с системой контроля, свидетельствует о снижении повреждаемости стального трубопровода более, чем в 20 раз по сравнению с канальной прокладкой того же срока службы [9,10]. 
 
Часто к преимуществам труб в ППМ изоляции относят их меньшую стоимость по сравнению с ППУ. При этом не говорится о том, что для получения необходимой плотности требуется в 2 раза больше компонентов пены, чем для ППУ изоляции. Учитывая, что доля ПЭ оболочки в стоимости материалов менее 50%, нетрудно понять, что ППМ изоляция не может быть дешевле ППУ. В [3] сделан вывод о практически одинаковой стоимости строительства теплосетей для обоих видов изоляции. Необходимо отметить, что эти оценки сделаны для толщин ППМ изоляции, которые имеют большие тепловые потери по сравнению с ППУ изоляцией и потребуют больших эксплуатационных расходов. 
 
При выборе того или иного типа изоляции теплоснабжающая компания, исходя из целей обеспечения надежности и экономичности теплоснабжения, должна ориентировать-ся на такие критерии, как теплоизоляционные показатели и их изменение в процессе эксплуатации, появление повреждений трубопровода и изоляции и их своевременное обнаружение и устранение. Вышеприведенный анализ показывает, что с этих точек зрения трубы в ППМ изоляции трудно рассматривать как эффективную и перспективную технологию, которая может обеспечить реальное энергосбережение и надежность эксплуатации тепловых сетей, особенно в случае бесканальной прокладки.

Список литературы
1. Умеркин Г.Х. Конструкция теплопроводов в пенополимерминеральной изоляции. Новости теплоснабжения №4 (апрель) 2001 г., с.18-19.
2. Мишин М.Е. Трубы в ППМ изоляции – современный способ строительства тепловых сетей. Новости теплоснабжения №3(март) 2010 г., с.34-37.
3. Силаев Д.А. ППУ и ППМ изоляции. Взгляд с другой стороны. Новости теплоснабжения №7(июль) 2009 г., с.32-36.
4. Новиков И.Е.Особенности прокладки трубопроводов тепловых сетей в России – сегодняшние тенденции в повышении надежности теплоснабжения. - Новости теплоснабжения №6 (июнь) 2011 г., с.42-45.
5. Мишина А.М., Кулешов А.С., Силаев Д.А. Теплоизоляционные свойства пенополимерминеральной изоляции. - Новости теплоснабжения №6 (июнь) 2008 г., с.45.
6.Умеркин Г.Х. Исследование процессов высыхания пенополимерминеральной теплогидроизоляции. Новости теплоснабжения №11(ноябрь) 2005 г., с.45-46.
7.Sallberg S.-E., Nilsson S., Bergstrom G. Leakage ways for ground-water in PUR-foam.10th Intern.Simposium on District Heating and Cooling 3-5 Sept.2006, Hannover, Germany.
8. Методика оценки влияния влажности на эффективность тепловой изоляции оборудования и трубопроводов. МДС 41-7.2004.
9. Кашинский В.И., Липовских В.М., Ротмистров Я.Г. Опыт эксплуатации трубопроводов в пенополиуретановой изоляции в ОАО «Московская теплосетевая компания» Теплоэнергетика, №7 2007, с.28-30.
10. Поляков В.А. Трубопроводы с ППУ: надежно и экономично. - Коммунальный комплекс России, №3-4 (57-58) 2009, с.56-58.

Рис.1.Конструкция ППМ изоляции (статья Мишина).

Рис.2. Схема разрезной неизотермической колонки.
1- Нагреватель (70-90 °С); 2 – образец ППМ; 3 - климатическая камера (25°С); 4 - теплоизоляционный слой; 5 - металлический лист.